Ca²⁺ oscillations in hepatocytes do not require the modulation of InsP₃ 3-kinase activity by Ca²⁺

G. Dupont^{a,*}, O. Koukoui^b, C. Clair^b, C. Erneux^c, S. Swillens^c, L. Combettes^b

^aUniversité Libre de Bruxelles, Faculté des Sciences CP231, Boulevard du Triomphe, B-1050 Brussels, Belgium

^bINSERM U442, Université de Paris-Sud, bât 443, 91405 Orsay, France

^cUniversité Libre de Bruxelles, IRIBHM, Faculté de Médecine, Campus Erasme, Route de Lennik 808, B-1070 Brussels, Belgium

Received 11 October 2002; accepted 28 November 2002

First published online 11 December 2002

Edited by Jacques Hanoune

Abstract Receptor-mediated production of inositol 1,4,5-trisphosphate (InsP₃) initiates Ca²⁺ release and is responsible for cytosolic Ca²⁺ oscillations. InsP₃ oscillations have also been observed in some cells. One of the enzymes controlling InsP₃ catabolism, the InsP₃ 3-kinase, is stimulated by Ca²⁺; this regulation is presumably part of the reason for InsP₃ oscillations that have been observed in some cells. Here, we investigate the possible role of Ca2+-activated InsP3 catabolism on the characteristics of the InsP₃-induced Ca²⁺ oscillations. Numerical simulations show that if it is assumed that the Ca^{2^+} -independent InsP₃ catabolism is predominant, Ca²⁺ oscillations remain qualitatively unchanged although the relative amplitude of the oscillations in InsP₃ concentrations becomes minimal. We tested this prediction in hepatocytes by masking the Ca²⁺-dependent InsP₃ catabolism by 3-kinase through the injection of massive amounts of InsP₃ 5-phosphatase, which is not stimulated by Ca²⁺. We find that in such injected hepatocytes, Ca2+ oscillations generated by modest agonist levels are suppressed, presumably because of the decreased dose in InsP3, but that at higher doses of agonist, oscillations reappear, with characteristics similar to those of untreated cells at low agonist doses. Altogether, these results suggest that oscillations in InsP3 concentration due to Ca^{2^+} -stimulated InsP $_3$ catabolism do not play a major role for the oscillations in Ca^{2^+} concentration.

 $\ \, \odot$ 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.

Key words: Calcium oscillation; Inositol 1,4,5-trisphosphate; InsP₃ 3-kinase; InsP₃ 5-phosphatase; Hepatocyte; InsP₃ oscillation

1. Introduction

Inositol 1,4,5-trisphosphate (InsP₃) is a widespread second messenger inducing Ca²⁺ release from endoplasmic reticulum (ER) stores. In the vast majority of cell types, the resulting rise of Ca²⁺ in the cytosol takes the form of repetitive Ca²⁺ oscillations, whose period ranges from seconds to minutes [1,2]. One of the most accepted explanations for Ca²⁺ oscillations rests on the biphasic regulation of the InsP₃ receptor (InsP₃R), which can be activated by low concentrations of

*Corresponding author. Fax: (32)-2-650 57 87. E-mail address: gdupont@ulb.ac.be (G. Dupont).

Abbreviations: InsP₃, inositol 1,4,5-trisphosphate; InsP₄, inositol 1,3,4,5-tetrakisphosphate; DAG, diacylglycerol; PKC, protein kinase C

Ca²⁺ and inactivated by higher concentrations of this messenger. Within the framework of this explanation, Ca²⁺ oscillations can be generated in the presence of a constant level of InsP₃, with the level of InsP₃ controlling the presence and the frequency of Ca²⁺ oscillations [3,4].

In some cell types, it has recently become possible to detect changes in InsP₃ levels in single cells [5–7]. The observation that in these cases Ca²⁺ and InsP₃ oscillate in synchrony suggests that feedbacks at the level of InsP3 synthesis or/and catabolism might play a role in the regulation of Ca²⁺ dynamics. Pathways of InsP3 synthesis and degradation have been well characterized [8] and are schematized in Fig. 1. Upon binding to its specific membrane receptor, the external stimulus (A) triggers the activation of receptor-associated Gproteins. This in turn stimulates a phospholipase C (PLC) which catalyzes the hydrolysis of membrane-bound phosphatidyl inositol 4,5-bisphosphate (PIP2) to form InsP3 and diacylglycerol (DAG). Already at this level, InsP3 oscillations could arise either through regulation of protein kinase C (PKC), a Ca²⁺- and DAG-dependent kinase that could exert a negative feedback on the receptor-G-protein complex [9,10], or through a Ca²⁺ stimulation of PLC activity [10–12] (the latter effect does not seem to occur in hepatocytes [13,14]). These two mechanisms could generate InsP3 oscillations due to negative or positive regulation of InsP₃ synthesis; Ca²⁺ oscillations would thus be driven by InsP₃ oscillations.

However, if Ca²⁺ regulates InsP₃ catabolism, InsP₃ oscillations could also be a consequence, rather than a cause, i.e. they could simply follow Ca²⁺ oscillations, themselves produced by the above-mentioned biphasic regulation of the InsP₃R. InsP₃ can be transformed either by InsP₃ 5-phosphatase-mediated dephosphorylation to yield inositol 1,4-bisphosphate, or by InsP₃ 3-kinase-mediated phosphorylation to yield inositol 1,3,4,5-tetrakisphosphate (InsP₄) [15]. Note that InsP₄ is also a substrate for 5-phosphatase and thus acts as a competitive inhibitor of InsP₃ dephosphorylation. The binding of Ca²⁺/calmodulin (CaM) to 3-kinase enhances its activity at variable extents: the A isoform of the enzyme is stimulated 2- to 3-fold by Ca²⁺/CaM, whereas the B isoform is stimulated up to 10-fold [16,17].

Mathematical modelling [10,18,19] has confirmed the intuitive prediction that this well-characterized Ca²⁺ stimulation of InsP₃ catabolism can generate InsP₃ oscillations. Basically, one could conceive two effects of these catabolism-induced InsP₃ oscillations. First, an active role of these oscillations in the pacemaker mechanism of Ca²⁺ oscillations was suggested by studies performed in hepatocytes [20] and smooth

muscle cells [21]. It was there shown that the Ca²⁺ signal following uncaging of poorly-metabolized InsP3 analogs decayed more slowly than the signal following InsP₃ uncaging. The interpretation of Fink et al. [21] was that InsP₃ degradation was a prerequisite for Ca²⁺ recovery. The control of InsP₃ removal by a Ca²⁺-stimulated 3-kinase would provide an ideal mechanism for this. Second, even if InsP3 oscillations are not strictly required for Ca²⁺ oscillations, one could argue that the enhanced degradation of InsP₃ following a Ca²⁺ spike (due to Ca²⁺-enhanced activity of the InsP₃ 3-kinase) plays a role in determining the relatively low frequency of Ca²⁺ oscillations, which cannot be explained on the basis of the kinetic properties of the InsP₃R [22]. In this view, each Ca²⁺ spike would provoke a decrease in InsP₃ so that the level of this messenger becomes too low to allow Ca2+ release through the InsP₃R. Consequently, the long period would correspond to the time necessary to rebuild the level of InsP₃ necessary to activate Ca²⁺ release through the receptor.

In the present study, we investigate both theoretically and experimentally the possible role of the Ca²⁺-controlled catabolism of InsP₃ in the triggering and characteristics of Ca²⁺ oscillations. We first use a previously developed theoretical model [18,22] to analyze the effect of masking the Ca²⁺-sensitive pathway of InsP₃ catabolism by a Ca²⁺-insensitive one. The model predicts that Ca²⁺ oscillations remain qualitatively unchanged, although InsP₃ oscillations practically disappear. This prediction is then corroborated by experiments of InsP₃ 5-phosphatase injection in hepatocytes.

2. Materials and methods

2.1. Preparation of hepatocytes

Isolated rat hepatocytes were prepared from fed female Wistar rats by limited collagenase (from Boehringer) digestion of rat liver, as previously described [23]. Under these conditions, about 20% of the cells recovered were associated by two (doublet) or three (triplet), and were ascertained not to be non-specific aggregates of non-connected cells by conventional light screening for dilated bile canaliculi, indicators of maintained functional polarity. After isolation, rat hepatocytes

were maintained (5×10^5 cells/ml) at 4°C in Williams' medium E (Gibco) supplemented with 10% fetal calf serum, penicillin ($100\,000$ units/ml) and streptomycin ($100\,\mu\text{g/ml}$). Cell viability, assessed by trypan blue exclusion, remained greater than 96% for 4–5 h.

2.2. Measurement of intracellular Ca^{2+} in individual cells

2.2.1. Loading of hepatocytes with fura2. Hepatocytes were loaded with fura2 (Molecular Probes Inc.) by injection (see below). Small aliquots of the suspended hepatocytes (5×10⁵ cells) were diluted in 2 ml of Williams' medium E modified as described above, then plated onto dish glass coverslips coated with collagen I, and incubated for 60 min at 37°C under an atmosphere containing 5% CO₂. After cell plating, the coverslips were then washed twice with a saline solution (20 mM HEPES, 116 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl₂, 0.8 mM MgCl₂, 0.96 mM NaH₂PO₄, 5 mM NaHCO₃, and 1 g/l glucose, pH 7.4). Dish coverslips were put onto a thermostated holder (36°C) on the stage of a Zeiss Axiovert 35 microscope set up for epifluor-escence microscopy.

2.2.2. Microinjection. Microinjection was performed using an Eppendorf microinjector (5242), as described previously [24]. Micropipettes with an internal tip diameter of 0.5 μm (Femtotips, Eppendorf) were filled with test agents and 5 mM fura2 in a buffer solution containing 100 mM KCl, 20 mM NaCl and 10 mM HEPES adjusted to pH 7.1. After microinjection, cells were allowed to recover for at least 10 min. The success of microinjection was assessed by monitoring the morphology of cells and their ability to retain injected fura2 and to display a low [Ca²⁺]_i. Cells were microinjected either with inactivated InsP₃ 5-phosphatase or with InsP₃ 5-phosphatase (activity: 120 nmol/min/ml in the pipette). Purification and determination of activity of the recombinant type I InsP₃ 5-phosphatase (19 μmol/min/ml in this study) were performed as described previously [25]. InsP₃ 5-phosphatase was inactivated at 90°C for 20 min.

Ca²⁺ imaging was described previously [24].

Theoretical prediction as to the role of the Ca²⁺-stimulated InsP₃ catabolism

The model for Ca²⁺ oscillations [18,22] relies on the biphasic regulation of the InsP₃R by Ca²⁺, with InsP₃ synthesized at a constant rate (proportional to the level of stimulation) and degraded by both 3-kinase and 5-phosphatase. The 3-kinase is stimulated by Ca²⁺, and its product, InsP₄, competes with InsP₃ for 5-phosphatase (Fig. 1). When the concentration of agonist (and thus of InsP₃) increases, cells typically display:

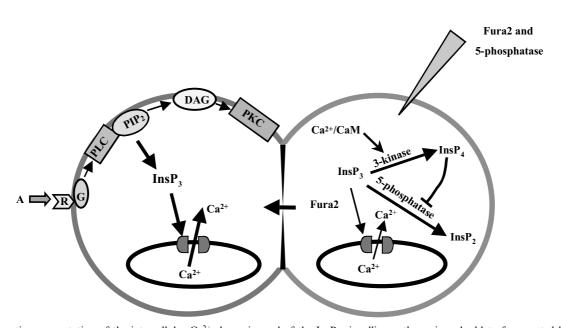


Fig. 1. Schematic representation of the intracellular Ca²⁺ dynamics and of the InsP₃ signalling pathway in a doublet of connected hepatocytes.

(1) low constant levels of Ca^{2+} , (2) sustained Ca^{2+} oscillations, the frequency of which increases with the agonist concentration, and (3) high sustained levels of Ca^{2+} [1–4].

Numerical simulations also show that the level of InsP₃

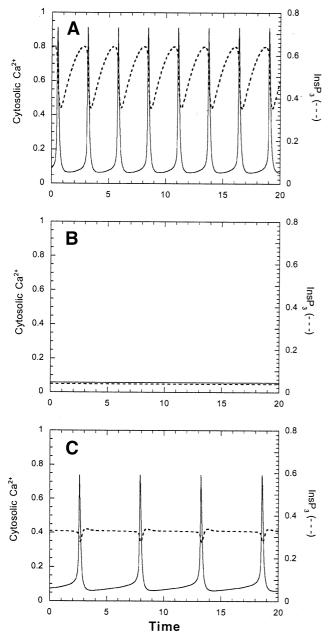
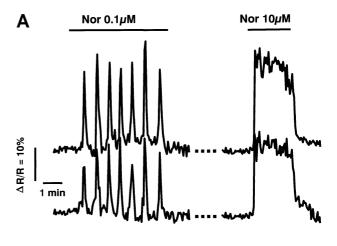



Fig. 2. Theoretical prediction as to the possible role of the Ca²⁺-stimulated InsP₃ catabolism. A: Oscillations in Ca²⁺ (solid line) and InsP₃ (dashed line) in a cell stimulated with a submaximal dose of agonist. B: The amount of 5-phosphatase in the simulated cell has been multiplied by 25 as compared to its value in A. C: Ca²⁺ oscillations can reappear if the cell is stimulated with a high dose of agonist. Curves have been obtained by numerical simulations of the model [20] with: $K_{\rm act}$ =0.5 μ M, $n_{\rm a}$ =3, $K_{\rm inh}$ =0.17 μ M, $n_{\rm i}$ =4, $k_{\rm -}$ =0.5 s⁻¹, $k_{\rm 1}$ =2.57 s⁻¹, b=0.0007 s⁻¹, $K_{\rm IP}$ =1 μ M, $V_{\rm MP}$ =6 μ M s⁻¹, $K_{\rm P}$ =0.35 μ M, α =0.1, Ca_{tot}=80 μ M, $V_{\rm PLC}$ =4 μ M s⁻¹, $V_{\rm k}$ =5 μ M s⁻¹, $K_{\rm k}$ =1 μ M, $K_{\rm d}$ =0.3 μ M, $n_{\rm d}$ =2. For A: γ =0.12, $V_{\rm p1}$ =5 μ M s⁻¹, $V_{\rm p2}$ =0.2 μ M s⁻¹, for B: γ =0.12, $V_{\rm p1}$ =125 μ M s⁻¹, $V_{\rm p2}$ =5 μ M s⁻¹, and for C: γ =1, $V_{\rm p1}$ =125 μ M s⁻¹, $V_{\rm p2}$ =5 μ M s⁻¹, these parameters only aim at qualitatively representing the situation encountered in hepatocytes, as most parameters are experimentally unknown. Scales are in s and μ M.

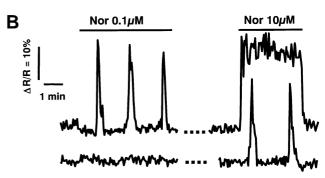


Fig. 3. Effect of 5-phosphatase on InsP₃-dependent agonist-induced $[Ca^{2+}]_i$ oscillations. One cell of the doublet (lower trace in each panel) was microinjected with fura2 and either with inactive (A) or active InsP₃ 5-phosphatase (B). Then, hepatocyte doublets were challenged with noradrenaline (Nor, 0.1 μ M or 10 μ M) for the time shown by the horizontal bar. Results are representative of those obtained using four (A) and five (B) doublets. For technical convenience, tracings were interrupted (the gap represents 3 min).

oscillates in phase with Ca²⁺ (Fig. 2A). As these oscillations rely on the Ca²⁺ stimulation of InsP₃ catabolism by 3-kinase, it can be expected that their amplitude would be much reduced if the relative importance of the other degradation pathway was increased. Thus, we simulated the effect of 5phosphatase injection and assumed that the concentration of this enzyme is increased by a factor of 25. If all the other parameters of the model are kept constant, oscillations are abolished and a low constant level of Ca²⁺ is predicted, consistent with the observed reduction in the level of InsP3 (Fig. 2B). If the external stimulation is then increased, Ca²⁺ oscillations are recovered, but now occur in the presence of a nearly constant level of InsP₃ (Fig. 2C). In this case, the average activity of the phosphatase exceeds that of the kinase by a factor of 30, while both activities were roughly the same in the normal situation corresponding to Fig. 2A.

Interestingly, these results predict that the characteristics of the repetitive Ca²⁺ spikes (shape, amplitude and order of magnitude of the period) remain similar to those obtained in response to submaximal stimulation of a cell that was not supposed to be injected with the enzyme. Thus, the model suggests that InsP₃ oscillations driven by Ca²⁺-activated InsP₃ degradation are not essential for InsP₃-induced Ca²⁺ oscillations. Detailed examination of the behavior of the model shows that this lack of effect is due to (1) receptor inactivation

being much faster than InsP₃ removal, and (2) minimal levels of InsP₃ during the course of oscillations being still above the threshold required for an oscillatory behavior.

4. Experimental results: effect of injecting InsP₃ 5-phosphatase into one cell of a hepatocyte doublet

In liver, hepatocytes are tightly coupled by gap junctions [26]. Ca²⁺ increases induced by agonists activating the InsP₃ cascade, such as vasopressin or noradrenaline, are highly coordinated within multiplets when gap junctions are functional (e.g. Fig. 3A and see [27] for review). Previous work suggests that calcium spikes are coordinated by the diffusion of small amounts of InsP₃ between cells that slightly differ in their sensitivity to the hormonal stimulus [28] (but see also [29]).

The fact that these coupled cells show very similar Ca2+ oscillations provides an ideal tool to evaluate the role of InsP₃ metabolism in the regulation of Ca²⁺ dynamics (see Fig. 1 for a schematic representation of the experiments). Indeed, injection of an enzyme that acts specifically on InsP3 catabolism in the injected cell but cannot diffuse through gap junctions makes it possible to observe the effect of InsP₃ metabolism on Ca²⁺ oscillations, while the non-injected cell provides a natural control for unperturbed Ca²⁺ oscillations. Moreover, 3-kinase B has been isolated from rat hepatocytes [30] and shown to be stimulated by Ca²⁺ [31], while the activity of InsP₃ 5-phosphatase has been shown to be unaffected by changes in [Ca²⁺] in this cell type [32]. Thus, we have injected type I InsP₃ 5-phosphatase in only one cell of hepatocyte doublets. This isoform is the most widespread of InsP₃ 5phosphatases and it is not stimulated by Ca²⁺ [33].

Together with InsP₃ 5-phosphatase, fura2 was microinjected; diffusion of this dye via gap junctions revealed that the two cells were indeed coupled. As shown in Fig. 3A, control injection in one cell of InsP₃ 5-phosphatase that had been previously inactivated did not result in any difference between the two cells as regards noradrenaline-induced Ca^{2+} oscillations. The two cells showed similar Ca^{2+} responses both at low (0.1 μ M) and maximal (10 μ M) noradrenaline concentration. In contrast, Ca^{2+} signals in the two cells were different when active InsP₃ 5-phosphatase had been injected into one cell of the doublet, whatever the concentration of the agonist (Fig. 3B), consistent with the reduction of the InsP₃ concentration in the injected cell anticipated by the model (Fig. 2B).

In contrast, at supra-maximal concentrations of noradrenaline (10 μ M), the non-injected cell shows a high sustained level of Ca²⁺, reflecting a very high level of InsP₃, but the injected cell displays low-frequency Ca²⁺ oscillations, typical of an intermediate level of InsP₃ (Fig. 3B, right panel). Thus, as predicted by the model (Fig. 2C), a hepatocyte that has been made silent by injection of 5-phosphatase can become responsive again by increasing the concentration of the agonist. The critical observation is that oscillatory Ca²⁺ signals can be observed at high enough agonist concentrations, despite the massive Ca²⁺-independent InsP₃ catabolism induced by the injection of 5-phosphatase.

5. Discussion

The present results show that, although InsP₃ oscillations probably arise in intact cells due to the stimulation of 3-kinase activity by Ca²⁺, these oscillations do not play a predominant

role neither in the triggering nor in the main characteristics of Ca²⁺ oscillations. However, they do not exclude the possibility that InsP₃ oscillations generated by another mechanism, for example by a PKC-mediated feedback at the level of the receptor-coupled G-protein, might play a crucial role for hepatic Ca²⁺ oscillations [10]. Yet the observation [34] that InsP₃-dependent cycles of Ca²⁺ release and re-uptake can be reproduced in permeabilized hepatocytes with InsP₃ clamped at submaximal concentration, suggests that the Ca²⁺ feedback on the InsP₃ (InsP₃R) might well be the central oscillatory mechanism in this cell type. This suggestion is corroborated in a more indirect manner by two other studies. The first one shows that type 2 InsP₃R, which is the most abundant in hepatocytes [35], is required for the normal Ca²⁺ oscillations, while types 1 and 3 do not sustain Ca²⁺ oscillations on their own [36]. Although both type 1 and type 2 display a bellshaped dependence on Ca²⁺, type 2 is known to be more sensitive to cytosolic Ca²⁺, which may explain its observed predominant role in the generation of Ca²⁺ oscillations. The other study also strongly suggests that the InsP₃R is the driving force of Ca²⁺ oscillations: it shows that Ca²⁺ oscillations (but not Ca2+ release) are abolished in DT40 cells in which the sensitivity of the InsP₃R to cytosolic Ca²⁺ has been decreased by substitution of the appropriate residues [37].

Nevertheless, even in the hypothesis of a primary role of the $InsP_3R$ in the generation of Ca^{2+} oscillations, the origin of the long periods observed in hepatocytes and other cells still remains unsolved. The present study demonstrates that the clue for these long periods can probably not be found in the Ca^{2+} dependence of $InsP_3$ catabolism, and thus emphasizes the necessity for investigating alternative mechanisms.

Acknowledgements: Supported by the Action de Recherche Concertée (CFB), the Belgium Programme of Interuniversity Poles of Attraction (initiated by the Belgium State, Prime Minister's Office) and a 'Tournesol' program. G.D. is 'Chercheur Qualifié du FNRS (Belgium)'. We thank P. Champeil for his critical comments about the manuscript.

References

- Thomas, A.P., Bird, G.S., Hajnoczky, G., Robb-Gaspers, L.D. and Putney Jr., J.W. (1996) FASEB J. 10, 1505–1517.
- [2] Berridge, M.J., Lipp, P. and Bootman, M.D. (2000) Nat. Rev. Mol. Cell Biol. 1, 11–21.
- [3] Goldbeter, A., Dupont, G. and Berridge, M.J. (1990) Proc. Natl. Acad. Sci. USA 87, 1461–1465.
- [4] Sneyd, J., Keizer, J. and Sanderson, M.J. (1995) FASEB J. 9, 1463–1472.
- [5] Hirose, K., Kadowaki, S., Tanabe, M., Takeshima, H. and Iino, M. (1999) Science 284, 1527–1530.
- [6] Nash, M.S., Young, K.W., Challiss, R.A. and Nahorski, S.R. (2001) Nature 413, 381–382.
- [7] Nash, M.S., Young, K.W., Willars, G.B., Challiss, R.A. and Nahorski, S.R. (2001) Biochem. J. 356, 137–142.
- [8] Berridge, M.J. (1987) Ann. N.Y. Acad. Sci. 494, 39-51.
- [9] Woods, N.M., Cuthbertson, K.S. and Cobbold, P.H. (1987) Biochem. J. 246, 619–623.
- [10] Kummer, U., Olsen, L.F., Dixon, C.J., Green, A.K., Bornberg-Bauer, E. and Baier, G. (2000) Biophys. J. 79, 1188–1195.
- [11] Meyer, T. and Stryer, L. (1988) Proc. Natl. Acad. Sci. USA 85, 5051–5055.
- [12] Harootunian, A.T., Kao, J.P., Paranjape, S. and Tsien, R.Y. (1991) Science 251, 75–78.
- [13] Renard, D., Poggioli, J., Berthon, B. and Claret, M. (1987) Biochem. J. 243, 391–398.
- [14] Bird, G.S. and Obie, J.F. (1997) Cell Calcium 21, 253-256.
- [15] Shears, S.B. (1992) Adv. Second Messenger Phosphoprotein Res. 26, 63–92.

- [16] Takazawa, K., Vandekerckhove, J., Dumont, J.E. and Erneux, C. (1990) Biochem. J. 272, 107–1112.
- [17] Sims, C.E. and Allbritton, N.L. (1998) J. Biol. Chem. 273, 4052– 4058
- [18] Dupont, G. and Erneux, C. (1997) Cell Calcium 22, 321-331.
- [19] Mishra, J. and Bhalla, S. (2002) Biophys. J. 83, 1298-1316.
- [20] Chatton, J.-Y., Cao, Y. and Stucki, J. (1998) Biophys. J. 74, 523-531
- [21] Fink, C., Slepchenko, B. and Loew, L. (1999) Biophys. J. 77, 617-628.
- [22] Dupont, G. and Swillens, S. (1996) Biophys. J. 71, 1714-1722.
- [23] Combettes, L., Tran, D., Tordjmann, T., Laurent, M., Berthon, B. and Claret, M. (1994) Biochem. J. 304, 585–594.
- [24] Tordjmann, T., Berthon, B., Claret, M. and Combettes, L. (1997) EMBO J. 16, 5398–5407.
- [25] De Smedt, F., Missiaen, L., Parys, J.B., Vanweyenberg, V., De Smedt, H. and Erneux, C. (1997) J. Biol. Chem. 272, 17367– 17375.
- [26] Spray, D.C., Bai, S., Burk, R.D. and Saez, J.C. (1994) Prog. Liver Dis. 12, 1–18.
- [27] Tordjmann, T., Clair, C., Claret, M. and Combettes, L. (2000) in: Calcium: The Molecular Basis of Calcium Action in Biology

- and Medicine (Pochet, R., Donato, R., Haiech, J., Heizmann, C. and Gerke, V., Eds.), pp. 219–232, Kluwer Academic Publishers, Dordrecht.
- [28] Dupont, G., Tordjmann, T., Clair, C., Swillens, S., Claret, M. and Combettes, L. (2000) FASEB J. 14, 279–289.
- [29] Höfer, T. (1999) Biophys. J. 77, 1244-1256.
- [30] Thomas, S., Brake, B., Luzio, J., Stanley, K. and Banting, G. (1994) Biochim. Biophys. Acta 1220, 219–222.
- [31] Biden, T., Altin, J., Karjalainen, A. and Bygrave, F. (1988) Biochem. J. 256, 697–701.
- [32] Conigrave, A., Patwardhan, A., Broomhead, L. and Roufogalis, B. (1992) Cell Signal. 4, 303–321.
- [33] Verjans, B., Moreau, C. and Erneux, C. (1994) Mol. Cell. Endocrinol. 98, 167–171.
- [34] Hajnoczky, G. and Thomas, A.P. (1997) EMBO J. 16, 3533–3543
- [35] Wojcikiewicz, R.J.H. (1995) J. Biol. Chem. 270, 11678-11683.
- [36] Miyakawa, T., Maeda, A., Yamazawa, T., Hirose, K., Kurosaki, T. and Iino, M. (1999) EMBO J. 18, 1303–1308.
- [37] Miyakawa, T., Mizushima, A., Hirose, K., Yamazawa, T., Bezprozvanny, I., Kurosaki, T. and Iino, M. (2001) EMBO J. 20, 1674–1680.